Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Mol Struct ; 1290: 135871, 2023 Oct 15.
Article in English | MEDLINE | ID: covidwho-2328011

ABSTRACT

Quantum mechanical second order Møller-Plesset (MP2) perturbation theory and density functional theory (DFT) Becke, 3-parameter, Lee-Yang-Parr (B3LYP) and Minnesota 2006 local functional (M06L) calculations were performed to optimize structure of nirmatrelvir and compute the Merz-Kollman electrostatic potential (MK ESP), natural population analysis (NPA), Hirshfeld, charge model 5 (CM5), and mulliken partial charges. The mulliken partial charge distribution of nirmatrelvir exhibits a poor correlation with the MK ESP charges in MP2, B3LYP, and M06L calculations respectively. The NPA, Hirshfeld, and CM5 partial charge scheme of nirmatrelvir indicate a reasonable correlation with MK ESP charge assignments in B3LYP and M06L calculations. The above correlations were not improved by the inclusion of implicit solvation model. The MK ESP and CM5 partial charges show a strong correlation between the results of MP2 and two DFT methods. The three optimized structures present a certain degree of differences from the crystal bioactive conformation of nirmatrelvir, suggesting the nirmatrelvir-enzyme complex is formed in the induced-fit model. The Reactivity of warhead electrophilic nitrile is justified by the relatively weaker strength of π bonds in the MP2 calculations. The nirmatrelvir hydrogen bond acceptors consistently show strong delocalization of lone pair electrons in three calculations, whereas hydrogen bond donors are found to have high polarization on the heavy nitrogen atoms in MP2 computations. This work helps to parametrize the force field of nirmatrelvir and improve accuracy of molecular docking and rational inhibitor design.

2.
Comput Biol Chem ; 102: 107810, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165190

ABSTRACT

Intermolecular interaction between key residue N501 of the epitope on SARS-CoV-2 RBD and screening antibody B38 was studied using the QM/MM and QM approach. The QM/MM optimized geometry shows that angle X-H---Y is 165° for O-H---O between mAb light chain S30 and RBD N501. High level MP2 calculations indicated the interaction between RBD N501 and S30 of B38 Fab light chain provide a relatively strong attractive force of - 3.32 kcal/mol, whereas the hydrogen bond between RBD Q498 and S30 was quantified as 0.10 kcal/mol. The decrease in ESP partial charge on hydrogen atom of hydroxyl group on S30 drops from 0.38 a.u. to 0.31 a.u., exhibiting the sharing of 0.07 a.u. from the lone pair electron oxygen of N501 due to hydrogen bond formation. The NBO occupancy of hydrogen atom also decreases from 25.79 % to 22.93 % in the hydroxyl H-O NBO bond of S30. However, the minor change of NBO hybridization of hydroxyl oxygen of S30 from sp3.00 to sp3.05 implies the rigidity of hydrogen bond tetrahedral geometry in the relative dynamic protein complex. The O-H---O angle is 165° which is close but not exactly linear. The structural requirement for sp3 hybridization of oxygen for hydroxyl group on S30 and dimension of protein likely prevent O-H---O from adopting linear geometry. The hydrogen bond strengths were also calculated using a variety of DFT methods, and the result of - 3.33 kcal/mol from the M06L method is the closest to that of the MP2 calculation. Results of this work may aid in the COVID-19 vaccine and drug screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Oxygen , Hydrogen , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL